
P e r f o r m a n c e - O r i e n t e d F o r m a l S p e c i f i c a t i o n s - -
t h e L o T o T I s A p p r o a c h

Ina Schieferdecker

GMD FOKUS, Hardenbergplatz 2, D-10623 Berlin
tel: § 30 254 99 170~ e-mail: ina@fokus.gmd.de,
http://www.fokus.gmd.de/htbin/info/minos/ina

Abs t rac t . The paper presents the performance-oriented, LOTOS exten-
sion LoToTIs. LoToTIs allows us to specify performance-oriented be-
havior via quantified time~ quantified nondeterminism~ quantified par-
allelism, and action monitoring. It offers a set of refinement rules from
LOTOS to LoToTIs. Therefore~ LoToTIs supports the standard conform
development of performance-oriented specifications from existing LOTOS
specifications.

1 P e r f o r m a n c e E v a l u a t i o n b a s e d o n F o r m a l S p e c i f i c a t i o n s

In the mid eighties [10] there was already recognized that specifying perfor-
mance requirements can be as important as specifying functional requirements
of distributed systems. However, formal specification techniques covered so far
primarily functional aspects for the investigation of the functional correctness
of distributed systems. Hence, it was (and is still) not unusual that a system is
fully implemented or at least implemented as a prototype before any at tempt
is made to investigate its performance. However, costly re-prototyping or re-
implementation can be avoided, if performance could be predicted from the
specification of a distributed system. A framework, which supports functional
and performance-oriented behavior specification, and which allows us to evalu-
ate performance from that specification would offer major advantages. For this
purpose, new concepts have to be incorporated into formal specification tech-
niques. Only recently, there had been published some proposals that close the
gap between formal specification and performance evaluation [1].

This paper presents the LoToTIs approach that is a newly-designed perfor-
mance-oriented formal description technique (FDT). Its main advantage is the
upward compatibility with LOTOS that is one of the internationally standard-
ized FDTs [5]. After introducing the main concepts of LoToTIs , we present the
language and give an insight into its semantics. The most important properties
of L oToTIs are given. The paper finishes with a methodology based on the Lo-
T o s / L o T o T I S framework that supports the development of standard conform
prototypes and the prediction of their performance.

773

2 T h e L O T O T I S A p p r o a c h

In order to develop a useful and adequate FDT for performance evaluation, we
have to identify the aspects of distributed systems which influence their perfor-
mance. The starting point is to consider a distributed system as being composed
of a number of tasks. The execution of system is the parallel and/or sequen-
tially ordered execution of the tasks. Every task realizes a certain functionality.
Besides their functional behavior, tasks are

- time-consuming,

- request resources for their execution, and
- have priorities in access to these resources.

For obvious reasons, the precondition for any performance evaluation is the
possibility to express the time consumption of tasks. This leads us to the con-
cept of quantified time. The availability of resources influences the grade of par-
allelism in a distributed system and therefore its performance. Thus, a concept
of quantified parallelism is required. Furthermore, distributed systems are inher-
ently nondeterministic due to their complexity and the unpredictable behavior
of their environment. Formal specifications represent nondeterminism by means
of choices between several possible subsequent behaviors. For the sake of perfor-
mance evaluation, we have to quantify these choices explicitly. Hence, we have
to have a concept of quantified nondeterminism. Last but not least, performance
characteristics of a distributed system are determined by the execution of tasks
and th@ time distances between them. They can only be determined if the execu-
tion of tasks is observable from outside of the system. A concept of monitoring
is required in order to make observable any task of interest - - independent of
whether this task is externally visible or internally hidden.

We decided to incorporate these concepts into LOTOS [5] - - the Language of
Temporal Ordering Specification. It is based on process algebras (CCS, CSP)
and algebraic data type specifications (AcT ONE). Another origin of Lo To TIs
is T I s - - the Timed Interacting Systems Approach ([14],[12]).

2.1 T h e N o t i o n o f S t r u c t u r e d A c t i o n s

The main feature of LOToTIs are structured actions, which replace classic ac-
tions used in process algebras. While classic actions represent task functionali-
ties, structured action with their action parameters represent also performance
characteristics of tasks. These action parameters make the performance-oriented
modeling of distributed systems conceptually easy. There are no separate mod-
eling features for time, priorities, resources, and monitoring. All these features
belong to the notion of a structured action. The parameters of a structured
action a (t , p , r , m) are the following:

774

1. T h e in te rac t ion t ime t defines the length of an in t e rac t ion wi th synchro-
n iza t ion pa r tne r s 1. The in te rac t ion t ime makes s t ruc tu red ac t ions in genera l
non- ins t an taneous , so t h a t t hey descr ibe t rue -concur ren t behavior .

2. T h e p r io r i ty p orders s imu l t aneous ly enab led ac t ions and de te rmines the
subsequent behavior . In add i t ion , the access to resources is ad ju s t ed by pri-
ori t ies .

3. The set of resources r has to be a l loca ted before any in t e rac t ion 2. In add i -
t ion to ac t ion pr ior i t ies , resource discipl ines de t e rmine the order of resource
a l loca t ions .

4. The mon i to r i ng signal m makes ac t ion occurrences observable f rom outs ide .

Wheneve r an ac t ion a t t a c h e d wi th a mon i to r i ng s ignal s t a r t s i ts i n t e rac t ion
per iod , the m o n i t o r i n g signal offers the s ignal ident if ier and the current ,
abso lu te t ime to the env i ronment .

The behav ior of s t ruc tu red ac t ions is exp la ined for three bas ic cases, which
are (1) a single s t ruc tu red act ion, (2) the synchron iza t ion of s t r uc tu r e d act ions,
and (3) the in te r leav ing of s t ruc tu red act ions.

. . . e x t e r n a l a (2 , 1, JR(2)]) i n
(. . . ; a; . . .) I [a] l (. . . ; a; . . .) . . .

resource deallocation by
another action in parallel - ~

r e s ~ 1 7 6 1 7 6 i

waiting pending nteraetion with duration t

I I - - 1 holding o o

first action enabled second action enabled resource allocation resource deallocation
pair construction (starting event) pair separation (requesting event) (finishing event)
Fig . 1. Synchronization of Structured Actions

S i n g l e a c t i o n Wheneve r a s t ruc tu red ac t ion is enab led i t t r ies to a l loca te needed
resources r immedia te ly . A - - not expl ic i t ly specified - - pend ing pe r iod un-
t i l the successful resource a l loca t ion m a y occur. Resources are ass igned to

1 A structured action without any synchronization can be considered to be a special
case of synchronizing structured actions.

2 Although resources and the resource management during system execution could
be represented by additional processes and da ta types, we adopt the use of explicit
resources as a very concise and succinct modeling feature.

775

... external a(0, 3, [R]), b(0, 2, [R]), c(0, I, JR]) in
(a; . . . I II b; . . . I II c; . . .)

1R, 2R, or 3R available

Full Sequentiallity Reduced parallelism Full parallelism

Fig. 2. Independent Structured Actions

pending actions on an all-or-nothing principle, meaning that either all needed
resources are assigned, or no assignment takes place. If possible, pending ac-
tions are assigned resources without any delay. Resources are assigned on the
action priority p and the resource discipline 3 basis. After resource allocation
the interaction period starts immediately. The monitoring signal m informs
the environment about the begin of the interaction period. The duration of
the interaction period is determined by the interaction t ime t . Resources are
occupied throughout the interaction period.

S y n c h r o n i z a t i o n Figure 1 depicts the synchronization of two structured ac-
tions a with interaction time 2, priority 1, and two requested resources of
type It. Synchronization partners become in general enabled at a different
point in time. Thus, one action a becomes enabled earlier than the other one
and has to wait for its synchronization par tner before requesting resources.
There is a - - not explicitly specified - - waiting period for synchronization
partners. Eventually, both actions are enabled and form an action tuple.
This action tuple behaves like a single action: it requests resources, waits for
the resource allocation, interacts, and deallocates resources.

I n d e p e n d e n c e Independent structured actions, i.e. parallel composed struc-
tured actions without synchronization, allow us to model full parallelism,
reduced parallelism, and full sequentiality. Figure 2 gives three independent,
instantaneous structured actions a , b , and c. Each of them needs one re-
source It. The grade of parallelism is determined by the number of available
resources It. The three cases - - at most one It, two It, and at least three It - -
could be also depicted as 1. { a , b , e } , 2. { a , b} , {c} and 3. {a}, {b},
{c}, where actions in parenthesis denote the parallel execution of actions
while commata denote their sequential ordering.

3 For time being, we restrict ourselves to the c~se of f i f o (first in first out).

776

2.2 Performance-Oriented Operators

While structured actions can be used to model quantified time, quantified paral-
lelism, and action monitoring, we need additional operators for the modeling of
quantified nondeterminism. Nondeterminism results from choices of alternative,
subsequent behavior. Those choices are either internal or external, that means
fully independent of the environment or influenced by its behavior, respectively.

For the case of internal choices, we decided to use a probabilistic choice op-
erator. It weights the alternative behaviors according to some probability. The
expression Bt [p] B2 with p E [0 ,1] denotes that the left behavior will be cho-
sen with probability p, while the right behavior will be chosen with probability
1-p. External choices that are classica.lly modeled by disabling expressions, can
be quantified by the use of t imeout operators. A timeout operator has a time
parameter t that determines the time point at which the disabling behavior ex-
pression is enabled. We distinguish between two forms of the t imeout operator
- - the hard timeout and the soft timeout. While in the first case the disabling
always occurs after t ime t , the disabling in the second case only occurs if the be-
havior expression to be disabled has not yet successfully started the interaction
period of its first action. If the left behavior is fast enough to start an interac-
tion before time t has passed it cannot be disabled anymore. In both cases, the
t imeout cannot occur if the behavior expression to be disabled has terminated
before time t .

P]ease note that potential nondeterminism still exists. In particular, at t ime
t when both the disabling behavior expression and the behavior expression to
be disabled are able to execute actions with the same priority, it is undetermined
which of them is chosen. Secondly, although the access to resources is adjusted
by the assignment of priorities to actions and resource disciplines to resources,
there is still the possibility that two equally prioritrized actions request resources
at the same point in time.

2.3 D e f i n i t i o n o f L O T O T I S

Lo ' roT i s is LOTOS extended with

1. structured actions that incorporate time, priorities, resources, and monitor-
ing signals,

2. probabilistic choice operator, and
3. t imeout operators.

The LoToTI s syntax is given in Table 1. The new LOTOTTS constructs are
marked with ->. A LoToTIs specification defines the time domMn to be discrete
or dense. Global available resources are declared on top of the specification.
Additionally, each process definition may contain a resource declaration of locally
available resources - - those resources can only be accessed from process internal
actions. Global resources cannot be accessed from internal actions of a locally
defined process. Therefore, resources can only be allocated by actions declared on
the same level as the resources themselves. Every structured action is explicitly

777

specification:
specification-symbol specification-identifier formal-parameter-list

global-type-definitions
-> [time-decl][resource-symbol resource-decls][external-aation-decls]

behavior definition-block endspecification-symbol
-> time-deal: time-symbol time-domain in-symbol
-> time-domain: discrete I dense
-> resource-deals: resource-identifier c [, resource-number

[c ~ , resource-discipline] ~] ' [: , ' resource-deals]
-> action-deals : action-identifier ~ (' interaction-time [c, , priority

[~ ,' resource-request [c , monitorlng-si~nal]]] ~)'

[~' action-deals]
-> external-action-deals: external-symbol action-deals in-symbol

process-definition:
process-symbol process-identifier formal-parameter-list define-symbol

-> [resource-symbol resource-deals]
definition-block endproaess-symbol

behavior-expression: .~.
->] hide-symbol action-deals in-symbol
-> I behavior-expression ''[['' probability '']]'' behavior-expression
-> I behavior-expression '~[['' time '~]>'' behavior-expression
-> I behavior-expression ~'[['' time ''>>'' behavior-expression

Table 1. The Syntax of LoToTIs

declared by the use of the external operator (for external gates) or by the use
of the hide operator (for internal actions). It is not mandatory to define all
parameters of a structured action; default assumptions are zero duration, zero
priority, no requested resources, and no monitoring signal.

L oToTI s operators are used to specify complex behavior composed of struc-
tured actions, s top , ex i t , and process instances. The result of such compositions
are behavior expressions which describe the behavior of a process or a complete
system. An overview about the LoToTIs operators is given in Table 2.

We distinguish between basic LoToTIs and full LoToTIs . Basic Lo To TIs
has no data part. Full LoToTIs is basic LoToT~s extended with data depen-
dencies. It incorporates algebraic data type specifications and the definition of
data dependencies in the behavior part. Most importantly, we can use the data
part for setting parameters of structured actions and for setting parameters of
performance-oriented operators during system execution. It allows us to model
the dynamic change of performance characteristics during system run. The ad-
ditional features of full LoToTIs are explained in Table 3. They are similar to
those features of full LOTOS. A good introduction and guidelines for their use
can be found in [2].

778

O p e r a t o r C o m m e n t

External: The external operator declares external gates g l , , g n

e x t e r n a l gl (. .) , . . ,gn(. .) in /3 of a LoToTIs specification with their parameters.
Hide: The hide operator declares internal, hidden structured
h i d e a1(..), .., a n (..)in/3 actions al, .., an with their parameters. These actions are

unobservable outside of/3.

Action Prefix: /3 becomes enabled after the interaction a has been
a;/3 completed.
Enabling: B2 becomes enabled after the successful termination of
/31>>/32 /31 via the ex i t process.

Parallel Composition:

/311 [gl, .., 9~] 1/32
Full Synchronization:
/31[[/32

/31 and/32 are executed in parallel and interact in their
gates gl, . . . , gn.
/31 and/32 become are executed in parallel. They interact
m their externally visible actions.

Interleaving: Ba and B2 are executed in parallel and fully indepen-
/31]JIB2 dently, i.e. without any interaction.

Choice: Provided that both behavior expressions are poten-
/31 []/32 tially able to execute their first action, only one ei-

ther /31 or /32 is chosen. The choice is being made
nondet erministically.

Probabilist ic Choice:
/31 [[p]]/3~

Either/31 or/32 becomes enabled. The choice is being
made randomly, with probabilit ies p for B1 and 1 - p
for /32, respectively. This choice does not take into ac-
count whether a behavior expression is potential ly able
to execute its first action or not. It may happen, that a
deadlocked behavior expression is being enabled this
cannot happen with the pure choice operator.

Disabling: /31 becomes enabled immediately. /32 may disable/31 at
/31 [>/32 arbitrary time, unless/31 has already terminated.
Soft Timeout:
/31[[t]>/32

Hard Timeout:
/31 [[t >>/32

/31 becomes enabled immediately./32 disables/31 at (rel-
ative) t ime t unless /31 has not yet s tar ted an interac-
tion or has not yet terminated. If/31 s tar ted an interac-
tion before time t it "survives", the disabling becomes
Lmpossible.
B1 becomes enabled immediately. B2 disables B1 at (rel-
ative) t ime t unless /31 has no~ yet terminated. Please
note, that in contrast to the soft t imeout operator /32
may disable /31 also within interaction periods. In that
case synchronization partners of the disabled interaction
of/31 are deadlocked as they are waiting for the disabled
synchronization partner to finish the common interac-
tion period.

T a b l e 2. Basic LoToTIs Operators

779

Feature C o m m e n t

Value offer: a !v Action a offers value v.
Variable offer: a ?x : type Action a offers variable x and requests a value for x.

Parameterized process: Process P has formal parameters Xl,.. �9 xm of type
process P[gl, .., gn] t l , . . .~ tm~ respectively. They are actualized when P
(Xl : tl, .., Xm : trn) .. endproc is instantiated.
Parameterized exit: Upon successful termination, a list of data values is
exit(x, ..) offered to the subsequent behavior.
Parameterized sequential The exit values are passed to the subsequent behavior.
composition: exit(x,..) >>
acceptxl : h,.. inB

Local value definition: Variable x of type t is bounded to value v in B.
let x : t = v,.. inB

Guards: Behavior B is enabled only if the guard g can be evalu-
I t] - > B ated to true.

Table 3. Additional Full LoToTIs Features

2.4 T h e F o r m a l S e m a n t i c s o f L O T O T I S

Due to the true concurrent behavior of LoToTIs , standard LOTOS semantics is
definitely inappropriate for defining LoToTIS. Instead, we use an intermediate
specification language which has instantaneous actions and a concept of time pre-
fixing. Thus, time-consuming, structured LoToTIs actions can be represented
as sequences of instantaneous actions with time consumption in between.

The LOTOTIS semantics is defined in two steps:

LoTOTIs trans GENIUS TDS S L T S .

The intermediate specification language is called GENIUS. Roughly speak-
ing, GENIUS is LOTOS with time, priorities, probabilities, monitoring, and time
prefix, probabilistic choice, and timeout operators. GENIUS is an upward com-
patible extension of LOTOS in the sense that it extends LOTOS with additional
features while preserving the original LOTOS semantics. LoToTIs is GENIUS
with structured actions and resources. LoToTIs is transformed to GENIUS in
order to define the LoToTIS semantics. The transformation allows us to consider
LoToTIs to be an upward compatible extension of LOTOS.

The transformation function tran8 maps every syntactically correct LOTO-
TIS specification L to a GENIUS specification t rans (L) . Besides the mapping of
structured LoToTIs actions, the transformation from LoToTIs to GENIUS is
used for the explicit definition of the LoToTIs resource management. This is
defined in terms of additional processes and data types contained in t rans (L) .
The formal semantics of GENIUS is defined by an operational semantics. The

780

transition derivation system TDS maps trans(L) to a class of structured labeled
transitions systems SLTS(trans(L)) representing the behavior of L.

In order to give an insight into the L o T o T I s semantics definition, Fig. 3
and Fig. 4 present parts of the L o T o T I s to GENIUS transformation and infer-
ence rules for GENIUS operators, respectively. The complete LOToTIs semantics
definition is contained in [11].

trans (...

hide

a(0,1, [R] ,ma),
b(l,3, JR] ,rob),

c(0,2, JR] ,mc)

in a; exit
llJ

b; c; exit
~176

~-+

''" !x; exit) (a !at_r ?x:Nat; a !at_s !x; a !at_f

Ill
(b .'at r ?x:Nat; b !at s !x; (I). b !at f !x;

c !at_r ?x:Nat; c !at_s !x; c !at_f !x; exit)
...

Fig. 3. Mapping of LoToTIs Actions to GENIUS Actions

The mapping of structured L o T o T I s actions to instantaneous GENIUS ac-
tions is exemplarily given in Fig. 3~ A structured L o T o T I s action is defined
by a sequence of requesting, starting, and finishing GENIUS action. At the re-
questing action a ! a t _ r ?x :Na t the action a waits for all its synchronization
partners. During the synchronization within this GENIUS action, there is as-
signed an unique identification number x for the tuple of actions. This number
is known by all synchronization partners, so that they are the only one that
are able to synchronize in the respective starting, requesting, and finishing ac-
tions. After the resource request in a !at__v ?x:Nat , the tuple of actions willing
to synchronize becomes pending until successful resource allocation. The t ime
point of synchronization in a !a t_s !x marks the successful resource allocation
and initiates the s tar t of the interaction period. The duration of the interaction
period is defined by means of the t ime prefix operator. If the structured action
is instantaneous (its interaction time is 0), no t ime prefix is used. The end of the
interaction t ime is marked by a finishing action a ! a t ~ !x, which immediately
causes all allocated resources to be released. You may wonder, why there is no
direct reflection of the other action parameters. In fact, the information on re-
quested resources and monitoring signals is transferred to another process called
C o l l e c t o r being one of the additional processes for the resource management .

Exemplari ly for the transition derivation system of GENIUS we present the
axioms for the GENIUS time prefix operator and the inferences for the GENIUS
t imeout operators. The inferences uses the set m a x B containing all GENIUS
actions with maximal priority that are enabled in /~4. Thus, the priority order

4 A GENIUS specification defines a priority for every action. The special action X
represents the passage of time and has lowest priority.

781

of actions is extended to a priority order on behavior expressions.

S o f t T i m e o u t

Ba It ~ B~ It and name(g) ~ {gl , . . . , gn,6, n}and g C maxB1

Bllt g' B~lt and name(g) C{g~,...,gn,6} andgCmaxB~

(*evolving*)

B ~ [g l , . . , g~[~]>B~ it ~ B'I it

B1 It • B1 it and X E maxB1 and l ~ < 1

B1 [gl, . . . , gn[l]>B2 it ~ B~ [gl, . . . , gn[l]>B2 It4-1'

B1 It ~ B~ it and X E maxB1 and 1 t = I

Bl[gl,...,gn[l]>B21t ~ B21t+l,

Hard T imeou t

BI[[/]>B2 It ~ Bit, and g E max(Bl[[l]>B2)

s l [[l>>s2 it 2 ~ s l , ,

(*saving*)

(*passage of time*)

(*timeout*)

Fig. 4. The GEN1US Timeout Operators

Likewise to an untimed disable operator, the soft t imeout operator repre-
sents situations, where the left behavior expression may be disrupted by some
exceptional circumstances. However, these exceptions can disable the behavior
expression on the left only after time 1, i.e. only at a well-defined moment of
time. In addition, the left behavior expression cannot be disrupted any more if
it executes one of the saving actions gl, �9 �9 g~ or if it terminates. A Lo To TIs
soft t imeout operator is transformed to a GENIUS soft t imeout operator where
the saving actions are the respective starts of interaction periods of those LOTO-
TIS structured actions that are contained in the left hand behavior expression.
The hard t imeout operator models hard deadlines. Whenever the left behavior
expression has not terminated until the hard deadline expires, the t imeout will
occur and will disrupt the left behavior expression. The hard t imeout opera-
tor is a special ease of the soft t imeout operator, since no saving actions exist
for the behavior expression on the left. A LoToTIs hard t imeout operator is
transformed one-to-one to a GENIUS hard timeout operator.

782

2.5 T h e r e f i n e m e n t r e l a t i o n b e t w e e n L O T O S a n d L O T O T I S

The refinement of L o T o T I s and LOTOS is defined as follows. A L o T o T I s spec-
ification t~ refines a LOTOS specification B1, denoted by B1 > > B2, if and only
if for every interaction a that is started from Y2, there is an action a that is
executed by ~1 and the subsequent behavior expressions stand in the refinement
relation, too. Hence we compare the occurrences of external LOTOS actions with
the occurrences of corresponding external L o T o T I s interaction periods. In other
words, we only compare the observable behavior of both specifications. Hence,
the refinement relation between L o T o T I s and LOTOS can be seen as a weak re-
finement, which abstracts from internal details of the specifications under study.
Obviously, the refined behavior is a subset of the original behavior.

L O T O S cons t ruc t L O T O T I S cons t ruc t

Structuring External gate a ~ t ime . . . in
actions of a LOTOS specification resource R[...] , in

!with behavior expression B ex te rna l a (t , p , r , m) in B
hidea in ~ t ime ~ in B

resource R[...] , in
hide a (t , p , r , m) in

Quantifying Yl [> B2 ~ B1 [[t]> B2 or
disablings ~ B1 [It>> B2

Quantifying B1 [] B2 ~ B1 [[p]] B2
choices

Table 4. Performance Refinement from LOTOS to LoToTIs

Three refinement rules from LOTOS to L o T o T I s exist (Table 4). Structuring
external and /or internal actions comprises the t ransformation of defining action
parameters for a given action - - defining its interaction time, its priority, its
resources, and/or its monitoring signal. It assumes that the t ime domain and
the used resources are properly declared. Quantifying disablings is the trans-
formation of defining a t ime parameter for a disabling operator. This reduces
the possibilities, when the disruption can occur. The third t ransformation is the
parameter izat ion of choice operators that weights the alternatives of the choice
expression with probabilities for their occurrences. The following theorem can
be proven.

T h e o r e m 1. Structuring actions, quantifying disabliugs, and quantifying chozces
in a LOTOS specification yield L o T o T I s specifications, which are refinements
of the original LOTOS specification.

Furthermore, if we define the underlying LOTOS specification of a L o T o T I s
specification to be the specification that results from omitt ing all additional

783

LoToTIs features (by application of the inverse transformation rules of Table 4),
the following lemma holds.

L e m m a 2 . Every LoToTIs specification is a refinement of its underlying Lo-
TOS specification.

For a formal proof of the refinement relation as well as of the subsequent
LoToTIs properties please refer to [11].

2.6 F u r t h e r P roper t i e s of LOTOTIS

Upward compatibility of LoToTIs with LOTOS comprises of two properties:

1. Every LOTOS specification is syntactically a LoToTIs specifications.
2. The semantics of a LOTOS specification is preserved when it is interpreted

as a LoToTIs specification.

The proof for upward compatibility is mainly based on the fact that the inter-
mediate specification language GENIUS that is used for the LoToTIs semantics
definition, is upward compatible with LOTOS.

Another important aspect of formal specifications is that of their finiteness.
Finiteness is often an essential precondition for the application of verification
methods. The refinement relation between LoToTIs and LOTOS allows us to
proof the following theorem.

T h e o r e m 3 . Every guarded LoToTIs specification, whose underlying LOTOS
specificatwn is finite, is finite.

Therefore, the finiteness conditions for LOTOS yield finiteness conditions for
LoToTIs. The following lemma can be formulated [3].

L e m m a 4. A guarded LoToTIs specification is finite if the following conditions
are fulfilled by its underlying LOTOS specification.

1. It is guarded,
2. it does not contain relabeling,
3. enabling is never involved within reeursive calls in a process and the processes

composed sequentially are finite,
4. if enabling is present within a recursive call, then at least its left argument

is finite and does not contain the recurszve call,
5. the disabling operator is only an outermost operator and its arguments are

finite,
6. if disabling is involved in a recursive call then its left argument is finite, and
7. there exists no recursive calls within parallel compositions.

784

t

. - - ~ A b s t r a c t s p e c i f i c a t i o n
p

s t

V e r i f i c a t i o n ~ Refinement

" " -" C o n c r e t e s p e c i f i c a t i o n
7

f Prototyping
Validation

" ' . _ _ _ . P r o t o t y p e

Performance Evaluation
1 4 \

Performance > P e r f o r m a n c e - E n h a n c e d

Refinement S p e c i f i c a t i o n

Performance Prediction

Fig. 5. The Performance-Oriented Prototyping Process

2.7 Pred ic t ing the Pe r fo rmance of LOTOS P r o t o t y p e s

This section presents a methodology for the standard conform development of
prototypes of distributed systems whose performance can be predicted in depen-
dence of different execution environments (Fig. 5).

How to develop functionally correct distributed systems from an (untimed)
formal service specification down to a system implementation is a well studied
area. The development process for distributed systems starts with an abstract
specification which reflects the main functionalities (services) offered to the user.
Refinement techniques were developed to support the design of formal specifica-
tions from abstract to more concrete specifications [2]. A concrete specification
describes the mechanisms for realization of the system functionalities. Verifica-
tion methods are used to proof the functional correctness of these specifications
or to proof the functional coincidence between abstract and concrete specifica-
tions by means of equivalence or contained-in relations [7]. Afterwards, proto-
types are implemented for a first investigation of the system behavior in real
environments. Prototype derivation techniques support the (semi)automatic de-
velopment of prototypes from a concrete, implementation-oriented formal speci-
fication [6]. Validation techniques can be used to (semi)formally prove that pro-
totypes (and subsequent implementations) meet their specifications [4].

However, it is still common that the timing behavior and the performance
is investigated only when a prototype or a first implementation of the system
exist. In the case of inconvenient performance, the whole development process
is restarted, what results in long periods of system development, late system
delivery, and high costs. Moreover, there will be no guarantee that the newly
designed system will have better performance than the first one. Therefore, we
suggest to use the technique of performance refinement that has been introduced
above for predicting the performance of prototypes of distributed systems. The
methodology is based on the LOTOS/LoToTIS framework. It starts with an
abstract functional LOTOS specification of the distributed system. This specifi-

785

cation can be refined in order to get a concrete, implementation-oriented LOTOS
specification of the system. Afterwards, the concrete specification is enhanced
with the performance characteristics of the system tasks in a given execution
environment. Let us give two examples for the appropriate parameterization of
a specification. Basic real-time parameters of system tasks such as duration of
inter-process communication or the access to the storage has to be measured
before incorporating them into the specification. Secondly, real resource require-
ments of system tasks are directly reflected by the resource parameter of struc-
tured actions. General rules of how to incorporate performance characteristics of
execution environments into formal specification are given in [13]. By applying
the performance refinement rules we get a LOTOTIS specification from which we
can derive performance measures. We derive simulation models from LoToTIs
specifications. For this purpose, we use the close relationship between transi-
tion systems and discrete event systems. A simulation tool is currently under
development, where we use our experiences from the TIs simulation tool [13].

Obviously, this is only a first step in order to support the performance-
oriented development of distributed systems based on formal specifications. A
lot of work has still to be done.

3 C o n c l u s i o n s

This paper resembled the concepts of quantified time, quantified nondetermin-
ism, quantified parallelism, and monitoring to be basic concepts for performance
evaluation based on formal specification techniques. Afterwards, it presented
structured actions as a powerful concept to describe performance-related issues
of distributed systems. We applied structured actions to LOTOS in order to sup-
port the standard conform development of distributed systems. The resulting
specification technique is called LoToTIs.

To the author's best knowledge, only two LOTOS extensions [8], [9] are com-
parable to the one presented in this paper. The first, however, is not a proper
extension of LOTOS since it excludes the disabling and enabling operator of Lo-
TOS. The second contains besides a time and a priority/weight concept a concept
of random experiments to express stochastic behavior. In that respect, it is more
expressive than LOToTIS since LoToTIs does not contain any means to specify
random variables having certain distribution functions. Both approaches cover
quantified time and quantified nondeterminism, but the possibility to express
quantified parallelism and action monitoring is not their target. The absence
of random variables in LOToTIs is however lightened by the possibility to ex-
press dynamically changing system characteristics by the use of the LoToTm
data part. In addition, we can see no serious problems when incorporating ran-
dom variables into LoToTIs . This would require the extension of the LoToTIs
semantics with aspects from probabilistic theory as it is similar done in [9].

Finally, we presented an approach to predict the performance of distributed
systems already during the system design phase. Based on a LOTOS specification
of the functional behavior, a performance-enhanced LoToTIs specification is

786

derived. Simulation models of the LoToTIs specification yield the performance
estimates of interest. In case of low performance, the distributed system can be
re-designed before any prototyping or implementation efforts are spent.

R e f e r e n c e s

1o P. Dembinski. Queueing models for ESTELLEo In Proc. of the 5th Intern. Conf.
on Formal Description Techniques, pages 73-86, 1993.

2. K.J. Turner (editor). Using Formal Description Techniques. John Wiley &: Sons,
Chichester, 1993.

3. A. Fantechi, S. Gnesi, and G. Mazzarini. How much expressive are LOTOS be-
haviour expressions? In Paricipant's Proc. of the Third Intern. Conf. Formal De.
scription Techniques, pages 9-24, 1990.

4. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall
Software Series. Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

5. ISO. Information processing systems - open system interconnection - LOTOS -
a formal description technique based on the temporal ordering of observational
behaviour. ISO/IEC 8807, 1988.

6. Guy Leduc. A framework based on implementation relations for implementing
lotos specifications. Computer Networks and ISDN Systems, (25):23-41, 1992.

7. F.J. Lin, P.M. Chu, and M.T. Liu. Protocol verification using teachability analysis.
Computer Communication Rev2ew, 17(5):126-135, 1987.

8. M.A. Marsan, A. Bianco, L. Ciminiera, R. Sisto, and A. Valenzano. Integrating
performance analysis in the context of LOTOS-based design. In Proc. of MAS-
COTS'94~ pages 292-298, 1994.

9. C. Miguel, A. Ferns J.L6pez, and Lo Vidaller. A LOTOS based performance
evaluation tool. Computer Networks and ISDN Systems, 25(7):791-814, 1993.

10. H. Rudin. Time in formal protocol specification. In Proc. of the GI/NTG Conf.
on Communication in Distributed Systems, Karlsruhe, pages 575-587, 1985.

11. I. Schieferdecker. Performance-Oriented Specification of Communication Proto-
cols and Verification of Deterministic Bounds of Their QoS Characteristics. PhD
thesis, Technical University Berlin, 1994. (Upon formal approval).

12. I. Schieferdecker and A. Wolisz. Operational semantics of timed interacting sys-
tems: an algebraic performance oriented formal description technique. Technical
Report 92/19, Department of Computer Science, Technical University Berlin, 1992.

13. M. Walch. A framework for performance analysis of parall.el protocol execution. In
Participant's Proc. of the IFIP Intern. Conf. on Information Networks and Data
Communication, Madeira Island, Portugal, 1994.

14. A. Wolisz. A unified approach to formal specification of communication proto-
cols and analysis of their performance. Journal of Mathematical Modelling and
Simulation in Systems Analysis, Special issue On System Analysis in Informatics,
(1993)(10), 1993

