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Abs t rac t .  The paper presents the performance-oriented, LOTOS exten- 
sion LoToTIs. LoToTIs allows us to specify performance-oriented be- 
havior via quantified time~ quantified nondeterminism~ quantified par- 
allelism, and action monitoring. It offers a set of refinement rules from 
LOTOS to LoToTIs. Therefore~ LoToTIs supports the standard conform 
development of performance-oriented specifications from existing LOTOS 
specifications. 

1 P e r f o r m a n c e  E v a l u a t i o n  b a s e d  o n  F o r m a l  S p e c i f i c a t i o n s  

In the mid eighties [10] there was already recognized that  specifying perfor- 
mance requirements can be as important  as specifying functional requirements 
of distributed systems. However, formal specification techniques covered so far 
primarily functional aspects for the investigation of the functional correctness 
of distributed systems. Hence, it was (and is still) not unusual that a system is 
fully implemented or at least implemented as a prototype before any at tempt  
is made to investigate its performance. However, costly re-prototyping or re- 
implementation can be avoided, if performance could be predicted from the 
specification of a distributed system. A framework, which supports functional 
and performance-oriented behavior specification, and which allows us to evalu- 
ate performance from that  specification would offer major advantages. For this 
purpose, new concepts have to be incorporated into formal specification tech- 
niques. Only recently, there had been published some proposals that  close the 
gap between formal specification and performance evaluation [1]. 

This paper presents the LoToTIs  approach that  is a newly-designed perfor- 
mance-oriented formal description technique (FDT).  Its main advantage is the 
upward compatibility with LOTOS that  is one of the internationally standard- 
ized FDTs [5]. After introducing the main concepts of LoToTIs ,  we present the 
language and give an insight into its semantics. The most important  properties 
of L oToTIs  are given. The paper finishes with a methodology based on the Lo-  
T o s / L o T o T I S  framework that  supports the development of standard conform 
prototypes and the prediction of their performance. 
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2 T h e  L O T O T I S  A p p r o a c h  

In order to develop a useful and adequate FDT for performance evaluation, we 
have to identify the aspects of distributed systems which influence their perfor- 
mance. The starting point is to consider a distributed system as being composed 
of a number of tasks. The execution of system is the parallel and/or  sequen- 
tially ordered execution of the tasks. Every task realizes a certain functionality. 
Besides their functional behavior, tasks are 

- time-consuming, 

- request resources for their execution, and 
- have priorities in access to these resources. 

For obvious reasons, the precondition for any performance evaluation is the 
possibility to express the time consumption of tasks. This leads us to the con- 
cept of quantified time. The availability of resources influences the grade of par- 
allelism in a distributed system and therefore its performance. Thus, a concept 
of quantified parallelism is required. Furthermore, distributed systems are inher- 
ently nondeterministic due to their complexity and the unpredictable behavior 
of their environment. Formal specifications represent nondeterminism by means 
of choices between several possible subsequent behaviors. For the sake of perfor- 
mance evaluation, we have to quantify these choices explicitly. Hence, we have 
to have a concept of quantified nondeterminism. Last but not least, performance 
characteristics of a distributed system are determined by the execution of tasks 
and th@ time distances between them. They can only be determined if the execu- 
tion of tasks is observable from outside of the system. A concept of monitoring 
is required in order to make observable any task of interest - -  independent of 
whether this task is externally visible or internally hidden. 

We decided to incorporate these concepts into LOTOS [5] - -  the Language of 
Temporal  Ordering Specification. It is based on process algebras (CCS, CSP)  
and algebraic data type specifications (AcT ONE). Another origin of Lo To TIs  
is T I s - -  the Timed Interacting Systems Approach ([14],[12]). 

2.1 T h e  N o t i o n  o f  S t r u c t u r e d  A c t i o n s  

The main feature of LOToTIs are structured actions, which replace classic ac- 
tions used in process algebras. While classic actions represent task functionali- 
ties, structured action with their action parameters represent also performance 
characteristics of tasks. These action parameters make the performance-oriented 
modeling of distributed systems conceptually easy. There are no separate mod- 
eling features for time, priorities, resources, and monitoring. All these features 
belong to the notion of a structured action. The parameters of a structured 
action a ( t , p , r , m )  are the following: 



774 

1. T h e  in te rac t ion  t ime  t defines the  length  of  an in t e rac t ion  wi th  synchro-  
n iza t ion  pa r tne r s  1. The  in te rac t ion  t ime  makes  s t ruc tu red  ac t ions  in genera l  
non- ins t an taneous ,  so t h a t  t hey  descr ibe  t rue -concur ren t  behavior .  

2. T h e  p r io r i ty  p orders  s imu l t aneous ly  enab led  ac t ions  and  de te rmines  the  
subsequent  behavior .  In  add i t ion ,  the  access to  resources is ad ju s t ed  by  pri-  
ori t ies .  

3. The  set of  resources r has  to  be a l loca ted  before any  in t e rac t ion  2. In add i -  
t ion  to ac t ion  pr ior i t ies ,  resource discipl ines  de t e rmine  the  order  of  resource 
a l loca t ions .  

4. The  mon i to r i ng  signal  m makes  ac t ion  occurrences  observable  f rom outs ide .  

Wheneve r  an ac t ion  a t t a c h e d  wi th  a mon i to r i ng  s ignal  s t a r t s  i ts  i n t e rac t ion  
per iod ,  the  m o n i t o r i n g  signal  offers the  s ignal  ident if ier  and  the  current ,  
abso lu te  t ime  to the  env i ronment .  

The  behav ior  of s t ruc tu red  ac t ions  is exp la ined  for three  bas ic  cases, which 
are (1) a single s t ruc tu red  act ion,  (2) the  synchron iza t ion  of  s t r uc tu r e d  act ions,  
and  (3) the  in te r leav ing  of  s t ruc tu red  act ions.  

. . .  e x t e r n a l  a (2 ,  1, JR(2)] )  i n  
( . . . ;  a; . . .  ) I [ a ] l  ( . . . ;  a; . . .  ) . . .  

resource deallocation by 
another action in parallel - ~  

r e s ~ 1 7 6 1 7 6  i 

waiting pending nteraetion with duration t 

I ...................... I . . . . . . . . . . .  - - 1  holding o o  

first action enabled second action enabled resource allocation resource deallocation 
pair construction (starting event) pair separation (requesting event) (finishing event) 
Fig .  1. Synchronization of Structured Actions 

S i n g l e  a c t i o n  Wheneve r  a s t ruc tu red  ac t ion  is enab led  i t  t r ies  to  a l loca te  needed 
resources r immedia te ly .  A - -  not  expl ic i t ly  specified - -  pend ing  pe r iod  un- 
t i l  the  successful resource a l loca t ion  m a y  occur.  Resources  are ass igned to  

1 A structured action without any synchronization can be considered to be a special 
case of synchronizing structured actions. 

2 Although resources and the resource management during system execution could 
be represented by additional processes and da ta  types, we adopt the use of explicit 
resources as a very concise and succinct modeling feature. 
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... external a(0, 3, [R]), b(0, 2, [R]), c(0, I, JR]) in 
( a; . . .  I II  b; . . .  I II  c; . . .  ) 

1R, 2R, or 3R available 

Full Sequentiallity Reduced parallelism Full parallelism 

Fig. 2. Independent Structured Actions 

pending actions on an all-or-nothing principle, meaning that  either all needed 
resources are assigned, or no assignment takes place. If  possible, pending ac- 
tions are assigned resources without any delay. Resources are assigned on the 
action priority p and the resource discipline 3 basis. After resource allocation 
the interaction period starts immediately. The monitoring signal m informs 
the environment about  the begin of the interaction period. The duration of 
the interaction period is determined by the interaction t ime t .  Resources are 
occupied throughout  the interaction period. 

S y n c h r o n i z a t i o n  Figure 1 depicts the synchronization of two structured ac- 
tions a with interaction time 2, priority 1, and two requested resources of 
type It. Synchronization partners become in general enabled at a different 
point in time. Thus, one action a becomes enabled earlier than the other one 
and has to wait for its synchronization par tner  before requesting resources. 
There is a - -  not explicitly specified - -  waiting period for synchronization 
partners.  Eventually, both  actions are enabled and form an action tuple. 
This action tuple behaves like a single action: it requests resources, waits for 
the resource allocation, interacts, and deallocates resources. 

I n d e p e n d e n c e  Independent structured actions, i.e. parallel composed struc- 
tured actions without synchronization, allow us to model full parallelism, 
reduced parallelism, and full sequentiality. Figure 2 gives three independent, 
instantaneous structured actions a ,  b ,  and c. Each of them needs one re- 
source It. The grade of parallelism is determined by the number of available 
resources It. The three cases - -  at most one It, two It, and at least three It - -  
could be also depicted as 1. { a , b , e } ,  2. { a , b} ,  {c} and 3. {a}, {b}, 
{c}, where actions in parenthesis denote the parallel execution of actions 
while commata  denote their sequential ordering. 

3 For time being, we restrict ourselves to the c~se of f i f o  (first in first out). 
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2.2 Performance-Oriented Operators 

While structured actions can be used to model quantified time, quantified paral- 
lelism, and action monitoring, we need additional operators for the modeling of 
quantified nondeterminism. Nondeterminism results from choices of alternative, 
subsequent behavior. Those choices are either internal or external, that  means 
fully independent of the environment or influenced by its behavior, respectively. 

For the case of internal choices, we decided to use a probabilistic choice op- 
erator. It weights the alternative behaviors according to some probability. The 
expression Bt [p] B2 with p E [0 ,1]  denotes that  the left behavior will be cho- 
sen with probability p, while the right behavior will be chosen with probability 
1-p. External choices that  are classica.lly modeled by disabling expressions, can 
be quantified by the use of t imeout operators. A timeout operator has a time 
parameter t that  determines the time point at which the disabling behavior ex- 
pression is enabled. We distinguish between two forms of the t imeout operator 
- -  the hard timeout and the soft timeout. While in the first case the disabling 
always occurs after t ime t ,  the disabling in the second case only occurs if the be- 
havior expression to be disabled has not yet successfully started the interaction 
period of its first action. If the left behavior is fast enough to start  an interac- 
tion before time t has passed it cannot be disabled anymore. In both cases, the 
t imeout cannot occur if the behavior expression to be disabled has terminated 
before time t .  

P]ease note that  potential nondeterminism still exists. In particular, at t ime 
t when both the disabling behavior expression and the behavior expression to 
be disabled are able to execute actions with the same priority, it is undetermined 
which of them is chosen. Secondly, although the access to resources is adjusted 
by the assignment of priorities to actions and resource disciplines to resources, 
there is still the possibility that  two equally prioritrized actions request resources 
at the same point in time. 

2.3 D e f i n i t i o n  o f  L O T O T I S  

Lo ' roT i s  is LOTOS extended with 

1. structured actions that  incorporate time, priorities, resources, and monitor- 
ing signals, 

2. probabilistic choice operator,  and 
3. t imeout operators. 

The LoToTI s  syntax is given in Table 1. The new LOTOTTS constructs are 
marked with ->. A LoToTIs  specification defines the time domMn to be discrete 
or dense. Global available resources are declared on top of the specification. 
Additionally, each process definition may contain a resource declaration of locally 
available resources - -  those resources can only be accessed from process internal 
actions. Global resources cannot be accessed from internal actions of a locally 
defined process. Therefore, resources can only be allocated by actions declared on 
the same level as the resources themselves. Every structured action is explicitly 
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specification: 
specification-symbol specification-identifier formal-parameter-list 

global-type-definitions 
-> [time-decl][resource-symbol resource-decls][external-aation-decls] 

behavior definition-block endspecification-symbol 
-> time-deal: time-symbol time-domain in-symbol 
-> time-domain: discrete I dense 
-> resource-deals: resource-identifier c [, resource-number 

[c ~ , resource-discipline] ~] ' [: , ' resource-deals] 
-> action-deals : action-identifier ~ (' interaction-time [c, , priority 

[~ ,' resource-request [c , monitorlng-si~nal]]] ~)' 

[~' action-deals] 
-> external-action-deals: external-symbol action-deals in-symbol 

process-definition: 
process-symbol process-identifier formal-parameter-list define-symbol 

-> [resource-symbol resource-deals] 
definition-block endproaess-symbol 

behavior-expression: .~. 
-> ] hide-symbol action-deals in-symbol 
-> I behavior-expression ''[['' probability '']]'' behavior-expression 
-> I behavior-expression '~[['' time '~]>'' behavior-expression 
-> I behavior-expression ~'[['' time ''>>'' behavior-expression 

Table 1. The Syntax of LoToTIs 

declared by the use of the external operator (for external gates) or by the use 
of the hide operator (for internal actions). It is not mandatory  to define all 
parameters of a structured action; default assumptions are zero duration, zero 
priority, no requested resources, and no monitoring signal. 

L oToTI s  operators are used to specify complex behavior composed of struc- 
tured actions, s top ,  ex i t ,  and process instances. The result of such compositions 
are behavior expressions which describe the behavior of a process or a complete 
system. An overview about the LoToTIs  operators is given in Table 2. 

We distinguish between basic LoToTIs  and full LoToTIs .  Basic Lo To TIs  
has no data  part. Full LoToTIs  is basic LoToT~s extended with data  depen- 
dencies. It incorporates algebraic data type specifications and the definition of 
data  dependencies in the behavior part. Most importantly, we can use the data  
part for setting parameters of structured actions and for setting parameters of 
performance-oriented operators during system execution. It allows us to model 
the dynamic change of performance characteristics during system run. The ad- 
ditional features of full LoToTIs  are explained in Table 3. They are similar to 
those features of full LOTOS. A good introduction and guidelines for their use 
can be found in [2]. 
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O p e r a t o r  C o m m e n t  

External: The external operator declares external gates g l ,  , g n  

e x t e r n a l  gl ( . . ) , . . ,gn( . . ) in /3  of a LoToTIs  specification with their parameters.  
Hide: The hide operator declares internal, hidden structured 
h i d e  a1(..), .., a n  (..)in/3 actions al, .., an with their parameters.  These actions are 

unobservable outside of/3. 

Action Prefix: /3 becomes enabled after the interaction a has been 
a;/3 completed. 
Enabling: B2 becomes enabled after the successful termination of 
/31>>/32 /31 via the ex i t  process. 

Parallel Composition: 

/311 [gl, .., 9~] 1/32 
Full Synchronization: 
/31[[/32 

/31 and/32 are executed in parallel and interact in their 
gates gl, . . . ,  gn. 
/31 and/32 become are executed in parallel. They interact 
m their externally visible actions. 

Interleaving: Ba and B2 are executed in parallel and fully indepen- 
/31 ]JIB2 dently, i.e. without any interaction. 

Choice: Provided that  both behavior expressions are poten- 
/31 []/32 tially able to execute their first action, only one ei- 

ther /31 or /32 is chosen. The choice is being made 
nondet erministically. 

Probabilist ic Choice: 
/31 [[p]]/3~ 

Either/31 or/32 becomes enabled. The choice is being 
made randomly, with probabilit ies p for B1 and 1 - p 
for /32, respectively. This choice does not take into ac- 
count whether a behavior expression is potential ly able 
to execute its first action or not. It may happen, that  a 
deadlocked behavior expression is being enabled this 
cannot happen with the pure choice operator.  

Disabling: /31 becomes enabled immediately. /32 may disable/31 at 
/31 [>/32 arbitrary time, unless/31 has already terminated. 
Soft Timeout:  
/31[[t]>/32 

Hard Timeout:  
/31 [[t >>/32 

/31 becomes enabled immediately./32 disables/31 at (rel- 
ative) t ime t unless /31 has not yet s tar ted an interac- 
tion or has not yet terminated. If/31 s tar ted an interac- 
tion before time t it  "survives", the disabling becomes 
Lmpossible. 
B1 becomes enabled immediately. B2 disables B1 at (rel- 
ative) t ime t unless /31 has no~ yet terminated. Please 
note, that  in contrast to the soft t imeout operator /32 
may disable /31 also within interaction periods. In that  
case synchronization partners of the disabled interaction 
of/31 are deadlocked as they are waiting for the disabled 
synchronization partner to finish the common interac- 
tion period. 

T a b l e  2. Basic LoToTIs  Operators 
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Feature C o m m e n t  

Value offer: a !v Action a offers value v. 
Variable offer: a ?x : type Action a offers variable x and requests a value for x. 

Parameterized process: Process P has formal parameters Xl,.. �9 xm of type 
process P[gl, .., gn] t l , . . .~  tm~ respectively. They are actualized when P 
(Xl : tl, .., Xm : trn) .. endproc  is instantiated. 
Parameterized exit: Upon successful termination, a list of data values is 
exit(x, ..) offered to the subsequent behavior. 
Parameterized sequential The exit values are passed to the subsequent behavior. 
composition: exit(x,..) >> 
acceptxl  : h,..  inB 

Local value definition: Variable x of type t is bounded to value v in B. 
let x :  t =  v,.. inB 

Guards: Behavior B is enabled only if the guard g can be evalu- 
I t ] - > B  ated to true. 

Table 3. Additional Full LoToTIs Features 

2.4 T h e  F o r m a l  S e m a n t i c s  o f  L O T O T I S  

Due to the true concurrent behavior of LoToTIs ,  standard LOTOS semantics is 
definitely inappropriate for defining LoToTIS.  Instead, we use an intermediate 
specification language which has instantaneous actions and a concept of time pre- 
fixing. Thus, time-consuming, structured LoToTIs  actions can be represented 
as sequences of instantaneous actions with time consumption in between. 

The LOTOTIS semantics is defined in two steps: 

LoTOTIs trans GENIUS TDS S L T S .  

The intermediate specification language is called GENIUS. Roughly speak- 
ing, GENIUS is LOTOS with time, priorities, probabilities, monitoring, and time 
prefix, probabilistic choice, and timeout operators. GENIUS is an upward com- 
patible extension of LOTOS in the sense that it extends LOTOS with additional 
features while preserving the original LOTOS semantics. LoToTIs  is GENIUS 
with structured actions and resources. LoToTIs  is transformed to GENIUS in 
order to define the LoToTIS semantics. The transformation allows us to consider 
LoToTIs  to be an upward compatible extension of LOTOS. 

The transformation function tran8 maps every syntactically correct LOTO- 
TIS specification L to a GENIUS specification t rans (L) .  Besides the mapping of 
structured LoToTIs  actions, the transformation from LoToTIs  to GENIUS is 
used for the explicit definition of the LoToTIs  resource management. This is 
defined in terms of additional processes and data types contained in t rans (L) .  
The formal semantics of GENIUS is defined by an operational semantics. The 
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transition derivation system TDS maps trans(L) to a class of structured labeled 
transitions systems SLTS(trans(L)) representing the behavior of L. 

In order to give an insight into the L o T o T I s  semantics definition, Fig. 3 
and Fig. 4 present parts of the L o T o T I s  to GENIUS transformation and infer- 
ence rules for GENIUS operators, respectively. The complete LOToTIs  semantics 
definition is contained in [11]. 

trans (... 

hide 

a(0,1, [R] ,ma), 
b(l,3, JR] ,rob), 

c(0,2, JR] ,mc) 

in a; exit 
llJ 

b; c; exit 
~176 

~-+ 

''" !x; exit) ( a !at_r ?x:Nat; a !at_s !x; a !at_f 

Ill 
( b .'at r ?x:Nat; b !at s !x; (I). b !at f !x; 

c !at_r ?x:Nat; c !at_s !x; c !at_f !x; exit) 
... 

Fig. 3. Mapping of LoToTIs Actions to GENIUS Actions 

The mapping of structured L o T o T I s  actions to instantaneous GENIUS ac- 
tions is exemplarily given in Fig. 3~ A structured L o T o T I s  action is defined 
by a sequence of requesting, starting, and finishing GENIUS action. At the re- 
questing action a ! a t _ r  ?x :Na t  the action a waits for all its synchronization 
partners. During the synchronization within this GENIUS action, there is as- 
signed an unique identification number x for the tuple of actions. This number 
is known by all synchronization partners, so that  they are the only one that  
are able to synchronize in the respective starting, requesting, and finishing ac- 
tions. After the resource request in a !at__v ?x:Nat ,  the tuple of actions willing 
to synchronize becomes pending until successful resource allocation. The t ime 
point of synchronization in a !a t_s  !x marks the successful resource allocation 
and initiates the s tar t  of the interaction period. The duration of the interaction 
period is defined by means of the t ime prefix operator.  If  the structured action 
is instantaneous (its interaction time is 0), no t ime prefix is used. The end of the 
interaction t ime is marked by a finishing action a ! a t ~  !x, which immediately 
causes all allocated resources to be released. You may wonder, why there is no 
direct reflection of the other action parameters.  In fact, the information on re- 
quested resources and monitoring signals is transferred to another process called 
C o l l e c t o r  being one of the additional processes for the resource management .  

Exemplari ly for the transition derivation system of GENIUS we present the 
axioms for the GENIUS time prefix operator and the inferences for the GENIUS 
t imeout  operators. The inferences uses the set m a x B  containing all GENIUS 
actions with maximal  priority that  are enabled in /~4. Thus, the priority order 

4 A GENIUS specification defines a priority for every action. The special action X 
represents the passage of time and has lowest priority. 
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of actions is extended to a priority order on behavior expressions. 

S o f t  T i m e o u t  

Ba It ~ B~ It and name(g) ~ {gl , . . . ,  gn,6, n}and g C maxB1 

Bllt g' B~lt and name(g) C{g~,...,gn,6} andgCmaxB~ 

(*evolving*) 

B ~ [ g l , . . ,  g~[~]>B~ it ~ B'I it 

B1 It • B1 it and X E maxB1 and l ~ < 1 

B1 [gl, . . . ,  gn[l]>B2 it ~ B~ [gl, . . . , gn[l]>B2 It4-1' 

B1 It ~ B~ it and X E maxB1 and 1 t = I 

Bl[gl,...,gn[l]>B21t ~ B21t+l, 

Hard  T imeou t  

BI[[/]>B2 It ~ Bit, and g E max(Bl[[l]>B2) 

s l [ [ l>>s2  it 2 ~  s l ,  , 

(*saving*) 

(*passage of time*) 

(*timeout*) 

Fig. 4. The GEN1US Timeout Operators 

Likewise to an untimed disable operator, the soft t imeout operator repre- 
sents situations, where the left behavior expression may be disrupted by some 
exceptional circumstances. However, these exceptions can disable the behavior 
expression on the left only after time 1, i.e. only at a well-defined moment of 
time. In addition, the left behavior expression cannot be disrupted any more if 
it executes one of the saving actions gl, �9 �9 g~ or if it terminates. A Lo To TIs  
soft t imeout operator is transformed to a GENIUS soft t imeout operator where 
the saving actions are the respective starts of interaction periods of those LOTO- 
TIS structured actions that are contained in the left hand behavior expression. 
The hard t imeout operator models hard deadlines. Whenever the left behavior 
expression has not terminated until the hard deadline expires, the t imeout will 
occur and will disrupt the left behavior expression. The hard t imeout opera- 
tor is a special ease of the soft t imeout operator, since no saving actions exist 
for the behavior expression on the left. A LoToTIs  hard t imeout operator is 
transformed one-to-one to a GENIUS hard timeout operator. 
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2.5 T h e  r e f i n e m e n t  r e l a t i o n  b e t w e e n  L O T O S  a n d  L O T O T I S  

The refinement of L o T o T I s  and LOTOS is defined as follows. A L o T o T I s  spec- 
ification t~ refines a LOTOS specification B1, denoted by B1 > >  B2, if and only 
if for every interaction a that  is started from Y2, there is an action a that  is 
executed by ~1 and the subsequent behavior expressions stand in the refinement 
relation, too. Hence we compare the occurrences of external LOTOS actions with 
the occurrences of corresponding external L o T o T I s  interaction periods. In other 
words, we only compare the observable behavior of both specifications. Hence, 
the refinement relation between L o T o T I s  and LOTOS can be seen as a weak re- 
finement, which abstracts  from internal details of the specifications under study. 
Obviously, the refined behavior is a subset of the original behavior. 

L O T O S  cons t ruc t  L O T O T I S  cons t ruc t  

Structuring External gate a ~ t ime  . . .  in 
actions of a LOTOS specification resource  R[...  ] ,  in 

!with behavior expression B ex te rna l  a ( t , p , r , m )  in B 
hidea in ~ t ime  ~ in B 

resource  R[...  ] ,  in 
hide a ( t , p , r , m )  in 

Quantifying Yl [> B2 ~ B1 [[t]> B2 or 
disablings ~ B1 [It>> B2 

Quantifying B1 [] B2 ~ B1 [[p ]] B2 
choices 

Table 4. Performance Refinement from LOTOS to LoToTIs 

Three refinement rules from LOTOS to L o T o T I s  exist (Table 4). Structuring 
external and /or  internal actions comprises the t ransformation of defining action 
parameters  for a given action - -  defining its interaction time, its priority, its 
resources, and/or  its monitoring signal. It  assumes that  the t ime domain and 
the used resources are properly declared. Quantifying disablings is the trans- 
formation of defining a t ime parameter  for a disabling operator.  This reduces 
the possibilities, when the disruption can occur. The third t ransformation is the 
parameter izat ion of choice operators that  weights the alternatives of the choice 
expression with probabilities for their occurrences. The following theorem can 
be proven. 

T h e o r e m  1. Structuring actions, quantifying disabliugs, and quantifying chozces 
in a LOTOS specification yield L o T o T I s  specifications, which are refinements 
of the original LOTOS specification. 

Furthermore, if we define the underlying LOTOS specification of a L o T o T I s  
specification to be the specification that  results from omitt ing all additional 
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LoToTIs features (by application of the inverse transformation rules of Table 4), 
the following lemma holds. 

L e m m a 2 .  Every LoToTIs specification is a refinement of its underlying Lo- 
TOS specification. 

For a formal proof of the refinement relation as well as of the subsequent 
LoToTIs properties please refer to [11]. 

2.6 F u r t h e r  P roper t i e s  of  LOTOTIS 

Upward compatibility of LoToTIs with LOTOS comprises of two properties: 

1. Every LOTOS specification is syntactically a LoToTIs specifications. 
2. The semantics of a LOTOS specification is preserved when it is interpreted 

as a LoToTIs specification. 

The proof for upward compatibility is mainly based on the fact that the inter- 
mediate specification language GENIUS that is used for the LoToTIs semantics 
definition, is upward compatible with LOTOS. 

Another important aspect of formal specifications is that of their finiteness. 
Finiteness is often an essential precondition for the application of verification 
methods. The refinement relation between LoToTIs and LOTOS allows us to 
proof the following theorem. 

T h e o r e m 3 .  Every guarded LoToTIs specification, whose underlying LOTOS 
specificatwn is finite, is finite. 

Therefore, the finiteness conditions for LOTOS yield finiteness conditions for 
LoToTIs. The following lemma can be formulated [3]. 

L e m m a  4. A guarded LoToTIs specification is finite if  the following conditions 
are fulfilled by its underlying LOTOS specification. 

1. It is guarded, 
2. it does not contain relabeling, 
3. enabling is never involved within reeursive calls in a process and the processes 

composed sequentially are finite, 
4. if  enabling is present within a recursive call, then at least its left argument 

is finite and does not contain the recurszve call, 
5. the disabling operator is only an outermost operator and its arguments are 

finite, 
6. if  disabling is involved in a recursive call then its left argument is finite, and 
7. there exists no recursive calls within parallel compositions. 
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Fig. 5. The Performance-Oriented Prototyping Process 

2.7 Pred ic t ing  the  Pe r fo rmance  of  LOTOS P r o t o t y p e s  

This section presents a methodology for the standard conform development of 
prototypes of distributed systems whose performance can be predicted in depen- 
dence of different execution environments (Fig. 5). 

How to develop functionally correct distributed systems from an (untimed) 
formal service specification down to a system implementation is a well studied 
area. The development process for distributed systems starts with an abstract 
specification which reflects the main functionalities (services) offered to the user. 
Refinement techniques were developed to support the design of formal specifica- 
tions from abstract to more concrete specifications [2]. A concrete specification 
describes the mechanisms for realization of the system functionalities. Verifica- 
tion methods are used to proof the functional correctness of these specifications 
or to proof the functional coincidence between abstract and concrete specifica- 
tions by means of equivalence or contained-in relations [7]. Afterwards, proto- 
types are implemented for a first investigation of the system behavior in real 
environments. Prototype derivation techniques support the (semi)automatic de- 
velopment of prototypes from a concrete, implementation-oriented formal speci- 
fication [6]. Validation techniques can be used to (semi)formally prove that pro- 
totypes (and subsequent implementations) meet their specifications [4]. 

However, it is still common that the timing behavior and the performance 
is investigated only when a prototype or a first implementation of the system 
exist. In the case of inconvenient performance, the whole development process 
is restarted, what results in long periods of system development, late system 
delivery, and high costs. Moreover, there will be no guarantee that the newly 
designed system will have better performance than the first one. Therefore, we 
suggest to use the technique of performance refinement that has been introduced 
above for predicting the performance of prototypes of distributed systems. The 
methodology is based on the LOTOS/LoToTIS framework. It starts with an 
abstract functional LOTOS specification of the distributed system. This specifi- 
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cation can be refined in order to get a concrete, implementation-oriented LOTOS 
specification of the system. Afterwards, the concrete specification is enhanced 
with the performance characteristics of the system tasks in a given execution 
environment. Let us give two examples for the appropriate parameterization of 
a specification. Basic real-time parameters of system tasks such as duration of 
inter-process communication or the access to the storage has to be measured 
before incorporating them into the specification. Secondly, real resource require- 
ments of system tasks are directly reflected by the resource parameter of struc- 
tured actions. General rules of how to incorporate performance characteristics of 
execution environments into formal specification are given in [13]. By applying 
the performance refinement rules we get a LOTOTIS specification from which we 
can derive performance measures. We derive simulation models from LoToTIs  
specifications. For this purpose, we use the close relationship between transi- 
tion systems and discrete event systems. A simulation tool is currently under 
development, where we use our experiences from the TIs simulation tool [13]. 

Obviously, this is only a first step in order to support the performance- 
oriented development of distributed systems based on formal specifications. A 
lot of work has still to be done. 

3 C o n c l u s i o n s  

This paper resembled the concepts of quantified time, quantified nondetermin- 
ism, quantified parallelism, and monitoring to be basic concepts for performance 
evaluation based on formal specification techniques. Afterwards, it presented 
structured actions as a powerful concept to describe performance-related issues 
of distributed systems. We applied structured actions to LOTOS in order to sup- 
port the standard conform development of distributed systems. The resulting 
specification technique is called LoToTIs.  

To the author's best knowledge, only two LOTOS extensions [8], [9] are com- 
parable to the one presented in this paper. The first, however, is not a proper 
extension of LOTOS since it excludes the disabling and enabling operator of Lo- 
TOS. The second contains besides a time and a priority/weight concept a concept 
of random experiments to express stochastic behavior. In that  respect, it is more 
expressive than LOToTIS since LoToTIs  does not contain any means to specify 
random variables having certain distribution functions. Both approaches cover 
quantified time and quantified nondeterminism, but the possibility to express 
quantified parallelism and action monitoring is not their target. The absence 
of random variables in LOToTIs is however lightened by the possibility to ex- 
press dynamically changing system characteristics by the use of the LoToTm 
data part. In addition, we can see no serious problems when incorporating ran- 
dom variables into LoToTIs .  This would require the extension of the LoToTIs  
semantics with aspects from probabilistic theory as it is similar done in [9]. 

Finally, we presented an approach to predict the performance of distributed 
systems already during the system design phase. Based on a LOTOS specification 
of the functional behavior, a performance-enhanced LoToTIs  specification is 
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derived. Simulation models of the LoToTIs  specification yield the performance 
estimates of interest. In case of low performance, the distributed system can be 
re-designed before any prototyping or implementation efforts are spent. 
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